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Perturbation theory for infinite-component wave equations 

A 0 Baruti and J Nagelt 
Sektion Physik der Universitat Miinchen, 8 Munchen 2, Germany 

Received 17 May 1976, in final form 1 March 1977 

Abstract. A new covariant perturbation theory for infinite-component wave equations is 
constructed which is analogous to the Epstein-Waller and Lewis-Dalgarno method of 
atomic physics. Instead of infinite sums over discrete and continuous states the matrix 
elements involve Lie algebra or group elements and can be evaluated in closed form. 

1. Introduction 

The interest in further study of infinite-component wave equations has declined in 
recent years due to the existence of space-like solutions, and due to the difficulties of 
constructing a fully-fledged theory with them. We proposed a solution to the first 
problem in our previous paper (Barut and Nagel 1977), where we show the physical 
interpretation and significance of the space-like solutions. The second problem can 
now be viewed as a field theory of composite particles. Such a field theory will 
undoubtedly have different features than the usual local field theory. Short of the goal 
of such a complete field theory, external field problems can be treated by a perturbation 
expansion. We develop here a covariant perturbation theory for a class of covariant 
infinite-component wave equations. It is different from a perturbation theory of the 
mass or the Hamiitonian operator, but amounts essentially to a perturbation of the 
equation for the principal quantum number. In an infinite-component field theory, for 
second-order and higher, matrix elements usually extend over all the infinitely many 
discrete and continuous states. However, by using the underlying Lie algebra structure 
and performing a perturbation theory on the so called ‘group states’ we can avoid these 
infinite sums and reduce the matrix elements to those of Lie algebra or group elements 
or their products which can be evaluated in closed form. An analogous situation occurs 
in atomic physics, where in the calculation of the Stark effect in H atom a perturbation 
theory is performed not on the Hamiltonian, but on a suitably chosen function of the 
Hamiltonian, for which the present paper provides a group theoretical explanation (see 
references in Schiff 1955; also see Waller 1926, Epstein 1926, Dalgarno and Lewis 
1955). 

We take as the prototype (and the most important case) of the unperturbed equation 
the form 

where 
( J , P  +pS + y)\k(P) = 0, (1) 

J, =air, +(Y,P, +a3P,S+ia4L,lq”. (2) 

t On leave of absence from the University of Colorado, Boulder, Colorado, USA 
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Here r,, S, L,, are the generators of the dynamical group S0(4 ,2)  and ai, p, y are 
constants of the theory. Our considerations will also automatically apply to other 
infinite-component wave equations. We shall write (1) also as 

&(P) = 0. (1’) 

The complete set of solutions of (1) is known, which includes also solutions with 
space-like momenta (Barut 1973). 

Let the interaction be denoted by W. For example, we can perturb equation (1) via 
the minimal coupling to the external field: P, + P, -eA,, and obtain the new equation 
in momentum space: 

(J,P”” +pS + y + @)‘@‘(Pr) = 0. (3) 

Because the mass spectrum of the new equation (3) is different from (1)  we have 
denoted the momentum by P:. Thus P,P’ = M 2 ,  but PLP’” # M 2 .  The interaction 
operator in this case is 

@= eJ,Ap +e2(a2+a3S)ApACC. 

We do not yet have complete Feynman rules for calculating the S matrix elements with 
infinite-component fields. However, equation (3) has well defined solutions as e + 0, 
hence an obvious approach in this case of external fields is to consider the interaction 
terms as small perturbations. Thus we attempt to solve equation (3) in a perturbation 
series. 

As a first step we transform (3) formally to the rest frame of the system in the 
presence of external fields: PG = (M’, 0,  0,O): 

(JJ4’+ ps + y + @)+yo) = 0. (4) 

Note that the interaction terms are Lorentz scalars. 
In the second step we eliminate S = r4 = L46 by performing the usual ‘tilt’ operation 

(Barut 1973). This is a transformation, similar to Foldy-Wouthuysen transformation 
but infinite-dimensional, whose purpose is to diagonalize the equation. For this 
purpose we set 

where T = L45 is the dilation operator in S0(4,2) .  By proper choice of 8’ we can make 
the coefficient of S in (4) zero and achieve a diagonalization: 

(aTo+b’+ W)?V(O) = 0, (6a )  
where 

and 
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2. Perturbation expansions 

In (6a)  To is a fixed operator with a well defined discrete spectrum determined by the 
representation of S0(4,2). We perform a perturbation expansion on the coefficients a, 
b, as well as on W and on the wavefunction Y ( 0 ) :  

U ’ = U + A U ~ + A ~ U , + .  . . 
b ’ = b + A b l + A 2 b 2 + .  . . 
w = A w , + A ~ w ~ + .  . . 
U ’ ( O ) = U + A U 1 +  . . . . ( 8 4  

These expansions of a, b, and W result from the expansion of M’, hence 8 ’ :  

M’= M+AMI +A2M2+ . . . 
e’= e +he,  + 

( d o  + b)U = 0 (9) 

(air0 + bl + W1)Uo + ( d o  + b)U1= 0 (10) 

(a2To+ b2 + W2)U0+ (a l ro+ bl  + Wl)Ul  + ( a L +  b)U2 = 0. (1 1) 

r o J n )  = nlnh (12) 

Then, from (6a) ,  we obtain for various powers of A the equations 

Now Y ( 0 )  in (6a)  are chosen as eigenstates of ro: 

which have been called group states. The inner product is just (Ul, U,) or (nlln2).  We 
take the inner product of (9)-(11) from the left with (nl,  (nln)= 1: 

a n + b = O  (13) 

a , n + b l + ( n I W , J n ) + ( a n + b ) ( n ( ~ l ) = O  (14) 

a2n + b 2 + ( n J W 2 ( n ) + ( a l n  +b,) (n lUl)+(nlWII~l )+(an + b ) ( n ( U 2 ) = 0 .  (15) 
Equation (13) is the unperturbed equation and, with the values of a and b from (6a )  (i.e. 
M’ = M), gives the spectrum equation 

NM, ai, 0, Y ,  n) = 0, (16) 
which we solve for m. 

In equations (14) and (15) we assume, as usual in perturbation theory, that 

( n  1%) = 0, (n  (U2) = 0. (17) 

u I ~  + b l =  -(nJ WIln) -71 (18) 

a2n + b 2 =  - (nIW2(n)- (n(WlIUl) .  (19) 

Hence 

and 

Now the operator that projects out the state In) is P = 1 - In)(nI which commutes 
with ( a i r o + b i )  but not necessarily with W1. Applying P to equation (10) we get 

(a + b l ) P ( n )  + P W l  In) + (UTo + b ) P T ,  = 0, 



1246 A 0 Barut and J Nagel 

or, since P J n )  = 0, PV1 =VI by (17), 

We insert this in (19): 

We now add (13), ( 1 8 )  and (21) together: 

( a + a l + a 2 +  . . . ) n + ( b + b l + b 2 +  . . . ) + y l + y 2 + y , = 0 ,  

or 

a'n + b'+ y1 + y 2 +  y3 = 0. 

If we insert a' and b' from (6) into (22) we obtain 

[-sgn(cu2Mf2 + ?)][a :M" - (a3M" +p)']'/'n + y +a2MfZ  + y1 + y 2  + y3 = 0. (23) 

This would be identical to the unperturbed equation if y1 = y 2  = y3 = 0, so the effect of 
the perturbation is to change the parameter y, which is actually clear from equation (4). 
Solving equation (23) for M' ,  we get to second order 

where 

ZV: =(nlJoln) = (na, cosh 8, + 2a2Mn + 2na3Mn sinh e,,), 
and 

with 8, given as in (7). The numbers yl, y2 ,  y3 have been defined in (18) and (21 ) ,  hence 
for any state In) the shifted mass M' can be evaluated using formulae (4),  (3, (8c) ,  (18), 
(21) and (24) and the perturbation theory is complete. 

It is instructive to compare the present perturbation theory based on equation (6a),  
and the results of equations ( 1 8 )  and (21), with the usual second-order expression 
(equations (3) or (4)): 

Here the states @ are the physical states. With (3, (25) can be written as 

(,qe-ie7-@ eie.T)n)(n le-i%.'e eieTp,) f E n  -Eo 
In the operator exp(iO,T), On is different for each n, which necessitates the evaluation, in 
the infinite sum, of each term separately. In contrast, equation (21) can be evaluated in 
closed form. 

The Lorentz transformation of (3)  into (4) is, in the presence of external fields, at 
first a formal operation as we have noted. The composite system in an external field 
will undergo a complex motion consisting of a centre of mass motion and an internal 
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deformation. We are interested in the intrinsic properties of the systems described by 
our equation, like magnetic moment and electromagnetic polarizabilities, and not in the 
motion of the centre of mass. For this purpose we evaluate the Lorentz transformation 
of the interaction 

at P = 0. The coordinate X in the interaction W transforms under (26) as 

M 
M’ 

X+X+- +P-dependent terms. 

The first term refers to the centre-of-mass motion and the second term to the internal or 
spin space. In the non-relativistic limit this procedure corresponds exactly to separating 
centre of mass and relative coordinates. At P = 0 we can treat to lowest order M’ as a 
number and then use our perturbation formulae, thereby obtaining finite formulae for 
energy shifts of the composite system or particle with spin. 

The application of this theory to the calculation of electromagnetic polarizabilities is 
discussed elsewhere (Barut and Nagel 1976). 
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